A Functional Limit Theorem for the Profile of Search Trees by Michael Drmota,1 Svante Janson

نویسنده

  • RALPH NEININGER
چکیده

We study the profile Xn,k of random search trees including binary search trees and m-ary search trees. Our main result is a functional limit theorem of the normalized profile Xn,k/EXn,k for k = α logn in a certain range of α. A central feature of the proof is the use of the contraction method to prove convergence in distribution of certain random analytic functions in a complex domain. This is based on a general theorem concerning the contraction method for random variables in an infinite-dimensional Hilbert space. As part of the proof, we show that the Zolotarev metric is complete for a Hilbert space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Functional Limit Theorem for The Profile of Search Trees

We study the profile Xn,k of random search trees including binary search trees and m-ary search trees. Our main result is a functional limit theorem of the normalized profile Xn,k/EXn,k for k = bα lognc in a certain range of α. A central feature of the proof is the use of the contraction method to prove convergence in distribution of certain random analytic functions in a complex domain. This i...

متن کامل

Profile and Height of Random Binary Search Trees

The purpose of this article is to survey recent results on distributional properties of random binary search trees. In particular we consider the profile and the height.

متن کامل

Maximal Clades in Random Binary Search Trees

We study maximal clades in random phylogenetic trees with the Yule–Harding model or, equivalently, in binary search trees. We use probabilistic methods to reprove and extend earlier results on moment asymptotics and asymptotic normality. In particular, we give an explanation of the curious phenomenon observed by Drmota, Fuchs and Lee (2014) that asymptotic normality holds, but one should normal...

متن کامل

Multivariate Normal Limit Laws for the Numbers of Fringe Subtrees in m-ary Search Trees and Preferential Attachment Trees

We study fringe subtrees of random m-ary search trees and of preferential attachment trees, by putting them in the context of generalised Pólya urns. In particular we show that for the random m-ary search trees with m ≤ 26 and for the linear preferential attachment trees, the number of fringe subtrees that are isomorphic to an arbitrary fixed tree T converges to a normal distribution; more gene...

متن کامل

The Minimal Spanning Tree in a Complete Graph and a Functional Limit Theorem for Trees in a Random Graph

The minimal weight of a spanning tree in a complete graph K n with independent, uniformly distributed random weights on the edges, is shown to have an asymptotic normal distribution. The proof uses a functional limit extension of results by Barbour and Pittel on the distribution of the number of tree components of given sizes in a random graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008